Altitude Robust Control of a Quad-rotor aircraft using Integral Sliding Mode controller
نویسنده
چکیده
As we know, sliding mode control methodology is one of the robust control technique to handle systems with model uncertainties, parameter variations and external disturbances. In this paper, a robust altitude control scheme is proposed for a nonlinear quad-rotor aircraft system based on sliding mode controller with an integral action to eliminate the steady-state error effect. The proposed sliding mode controller is chosen to improve the stability and robustness of overall z-dynamics during the altitude control at a desired height. The stability of the system is guaranteed via Lyapunov stability theory. A suitable sliding manifold is designed to achieve the control objective. At last, the theoretical results are supported by different simulation tests to verify the satisfactory performance of proposed robust control scheme under external disturbances applied to autonomous quad-rotor aircraft. Keywords—Sliding mode, Robust control, Integral action in Sliding mode, Quadrotor aircraft stabilization, steady-state error.
منابع مشابه
Robust Adaptive Attitude Stabilization of a Fighter Aircraft in the Presence of Input Constraints
The problem of attitude stabilization of a fighter aircraft is investigated in this paper. The practical aspects of a real physical system like existence of external disturbance with unknown upper bound and actuator saturation are considered in the process of controller design of this aircraft. In order to design a robust autopilot in the presence of the actuator saturation, the Composite Nonli...
متن کاملOptimal Integral Sliding Mode Controller of a UAV With Considering Actuator Fault
In this paper, using the State Dependent Riccati Equation (SDRE) method, we propose a Robust Optimal Integral Sliding Mode Controller (ROISMC) to guarantee an optimal control law for a quadrotor which has become increasingly important by virtue of its high degrees of manoeuvres ability in presence of unknown time-varying external disturbances and actuator fault. The robustness of the controller...
متن کاملRobust Integral Sliding-Mode Control of an Aerospace Launch Vehicle
An analysis of on-line autonomous robust tracking controller based on variable structure control is presented for an aerospace launch vehicle. Decentralized sliding-mode controller is designed to achieve the decoupled asymptotic tracking of guidance commands upon plant uncertainties and external disturbances. Development and application of the controller for an aerospace launch vehicle during a...
متن کاملRobust Backstepping Control of Induction Motor Drives Using Artificial Neural Networks and Sliding Mode Flux Observers
In this paper, using the three-phase induction motor fifth order model in a stationary twoaxis reference frame with stator current and rotor flux as state variables, a conventional backsteppingcontroller is first designed for speed and rotor flux control of an induction motor drive. Then in orderto make the control system stable and robust against all electromechanical parameter uncertainties a...
متن کاملRobust Controller Design Based on Sliding Mode Observer in The Presence of Uncertainties and Actuator Saturation
This paper studies the design of a robust output feedback controller subject to actuator saturation. For this purpose, a robust high-gain sliding mode observer is used to estimate the state variables. Moreover, the combination of Composite Nonlinear Feedback (CNF) and Integral Sliding Mode (ISM) controllers are used for robust output tracking. This controller consists of two parts, the CNF part...
متن کامل